Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 179(4): 1525-1536, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700540

RESUMO

In eukaryotes, the regulated transport of mRNAs from the nucleus to the cytosol through nuclear pore complexes represents an important step in the expression of protein-coding genes. In plants, the mechanism of nucleocytosolic mRNA transport and the factors involved are poorly understood. The Arabidopsis (Arabidopsis thaliana) genome encodes two likely orthologs of UAP56-interacting factor, which acts as mRNA export factor in mammalian cells. In yeast and plant cells, both proteins interact directly with the mRNA export-related RNA helicase UAP56 and the interaction was mediated by an N-terminal UAP56-binding motif. Accordingly, the two proteins were termed UAP56-INTERACTING EXPORT FACTOR1 and 2 (UIEF1/2). Despite lacking a known RNA-binding motif, recombinant UIEF1 interacted with RNA, and the C-terminal part of UIEF1 mainly contributed to the RNA interaction. Mutation of UIEF1, UIEF2, or both in the double-mutant 2xuief caused modest growth defects. A cross between the 2xuief and 4xaly (defective in the four ALY1-4 mRNA export factors) mutants produced the sextuple mutant 4xaly 2xuief, which displayed more severe growth impairment than the 4xaly plants. Developmental defects including delayed bolting and reduced seed set were observed in the 4xaly but not the 2xuief plants. Analysis of the cellular distribution of polyadenylated mRNAs revealed more pronounced nuclear mRNA accumulation in 4xaly 2xuief than in 2xuief and 4xaly cells. In conclusion, the results indicate that UIEF1 and UIEF2 act as mRNA export factors in plants and that they cooperate with ALY1-ALY4 to mediate efficient nucleocytosolic mRNA transport.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genoma de Planta , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Plant Physiol ; 177(1): 226-240, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540591

RESUMO

The regulated transport of mRNAs from the cell nucleus to the cytosol is a critical step linking transcript synthesis and processing with translation. However, in plants, only a few of the factors that act in the mRNA export pathway have been functionally characterized. Flowering plant genomes encode several members of the ALY protein family, which function as mRNA export factors in other organisms. Arabidopsis (Arabidopsis thaliana) ALY1 to ALY4 are commonly detected in root and leaf cells, but they are differentially expressed in reproductive tissue. Moreover, the subnuclear distribution of ALY1/2 differs from that of ALY3/4. ALY1 binds with higher affinity to single-stranded RNA than double-stranded RNA and single-stranded DNA and interacts preferentially with 5-methylcytosine-modified single-stranded RNA. Compared with the full-length protein, the individual RNA recognition motif of ALY1 binds RNA only weakly. ALY proteins interact with the RNA helicase UAP56, indicating a link to the mRNA export machinery. Consistently, ALY1 complements the lethal phenotype of yeast cells lacking the ALY1 ortholog Yra1. Whereas individual aly mutants have a wild-type appearance, disruption of ALY1 to ALY4 in 4xaly plants causes vegetative and reproductive defects, including strongly reduced growth, altered flower morphology, as well as abnormal ovules and female gametophytes, causing reduced seed production. Moreover, polyadenylated mRNAs accumulate in the nuclei of 4xaly cells. Our results highlight the requirement of efficient mRNA nucleocytosolic transport for proper plant growth and development and indicate that ALY1 to ALY4 act partly redundantly in this process; however, differences in expression and subnuclear localization suggest distinct functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Transporte de RNA , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Plant Mol Biol ; 93(3): 283-298, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28004241

RESUMO

KEY MESSAGE: We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Inflorescência/metabolismo , Inflorescência/ultraestrutura , Modelos Biológicos , Fenótipo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética
4.
Nucleic Acids Res ; 42(7): 4332-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497194

RESUMO

The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4-RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4-RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/química , Fatores de Elongação da Transcrição/genética
5.
PLoS One ; 8(3): e60644, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555998

RESUMO

The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56 interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it is involved in mRNA export from plant cell nuclei.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA de Plantas/metabolismo , RNA de Plantas/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...